Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(1-2): 015201, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193253

RESUMO

Transport properties of mixtures in the warm dense matter (WDM) regime play an important role in natural astrophysics. However, a physical understanding of ionic transport properties in quasisymmetric liquid mixtures has remained elusive. Here, we present extensive ab initio molecular dynamics (AIMD) simulations on the ionic diffusion and viscosity of a quasisymmetric binary nitrogen-oxygen (N-O) mixture in a wide warm dense regime of 8-120 kK and 4.5-8.0 g/cm^{3}. Diffusion and viscosity of N-O mixtures with different compositions are obtained by using the Green-Kubo formula. Unlike asymmetric mixtures, the change of proportions in N-O mixtures slightly affects the viscosity and diffusion in the strong-coupling region. Furthermore, the AIMD results are used to build and verify a global pseudo-ion in jellium (PIJ) model for ionic transport calculations. The PIJ model succeeds in reproducing the transport properties of N-O mixtures where ionization has occurred, and provides a promising alternative approach to obtaining comparable results to AIMD simulations with relatively small computational costs. Our current results highlight the characteristic features of the quasisymmetric binary mixtures and demonstrate the applicability of the PIJ model in the WDM regime.

2.
ACS Omega ; 6(44): 29820-29829, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778655

RESUMO

Strain engineering can effectively improve the energy band degeneracy of two-dimensional transition metal dichalcogenides so that they exhibit good thermoelectric properties under strain. In this work, we have studied the phonon, electronic, thermal, and thermoelectric properties of 1T-phase monolayer HfS2 with biaxial strain based on first-principles calculations combined with Boltzmann equations. At 0% strain, the results show that the lattice thermal conductivity of monolayer HfS2 is 5.01 W m-1 K-1 and the electronic thermal conductivities of n-type and p-type doped monolayer HfS2 are 2.94 and 0.39 W m-1 K-1, respectively, when the doping concentration is around 5 × 1012 cm-2. The power factors of the n-type and p-type doped monolayer HfS2 are different, 29.4 and 1.6 mW mK-2, respectively. Finally, the maximum ZT value of the n-type monolayer HfS2 is 1.09, which is higher than 0.09 of the p-type monolayer HfS2. Under biaxial strain, for n-type HfS2, the lattice thermal conductivity, the electronic thermal conductivity, and the power factor are 1.55 W m-1 K-1, 1.44 W m-1 K-1, and 22.9 mW mK-2 at 6% strain, respectively. Based on the above factor, the ZT value reaches its maximum of 2.29 at 6% strain. For p-type HfS2, the lattice thermal conductivity and the electronic thermal conductivity are 1.12 and 1.53 W m-1 K-1 at 7% strain, respectively. Moreover, the power factor is greatly improved to 29.5 mW mK-2. Finally, the maximum ZT value of the p-type monolayer HfS2 is 3.35 at 7% strain. It is obvious that strain can greatly improve the thermoelectric performance of monolayer HfS2, especially for p-type HfS2. We hope that the research results can provide data references for future experimental exploration.

3.
Phys Rev Lett ; 126(7): 075701, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666443

RESUMO

Shock reverberation compression experiments on dense gaseous deuterium-helium mixtures are carried out to provide thermodynamic parameters relevant to the conditions in planetary interiors. The multishock pressures are determined up to 120 GPa and reshock temperatures to 7400 K. Furthermore, the unique compression path from shock-adiabatic to quasi-isentropic compressions enables a direct estimation of the high-pressure sound velocities in the unexplored range of 50-120 GPa. The equation of state and sound velocity provide particular dual perspectives to validate the theoretical models. Our experimental data are found to agree with several equation of state models widely used in astrophysics within the probed pressure range. The current data improve the experimental constraints on sound velocities in the Jovian insulating-to-metallic transition layer.

4.
Phys Rev E ; 101(2-1): 023302, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168678

RESUMO

The effective one-component plasma (EOCP) model has provided an efficient approach to obtaining many important thermophysical parameters of hot dense matter [J. Clérouin, et al., Phys. Rev. Lett. 116, 115003 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.115003]. In this paper, we perform extensive quantum molecular dynamics (QMD) simulations to determine the equations of state, ionic structures, and ionic transport properties of neon and krypton within the warm dense matter (WDM) regime where the density (ρ) is up to 12 g/cm^{3} and the temperature (T) is up to 100 kK. The simulated data are then used as a benchmark to explicitly evaluate the EOCP and Yukawa models. It is found that, within present ρ-T regime, the EOCP model can excellently reproduce the diffusion and viscosity coefficients of neon and krypton due to the fact that this model defines a system which nearly reproduces the actual physical states of WDM. Therefore, the EOCP model may be a promising alternative approach to reasonably predicting the transport behaviors of matter in WDM regime at lower QMD computational cost. The evaluation of Yukawa model shows that the consideration of the energy level broadening effect in the average atom model is necessary. Finally, with the help of EOCP model, the Stokes-Einstein relationships about neon and krypton are discussed, and fruitful plasma parameters as well as a practical ρ-T-dependent formula of the effective coupling parameter are obtained. These results not only provide valuable information for future theoretical and experimental studies on dense neon and krypton but also reveal the applicability of the EOCP model and the limitation of the Yukawa model in WDM regime and further support the continuing search for a unified description of ionic transport in dense plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...